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AND CONTROL OF A PARP;WITSG VEEICI;E 

Joseph R. Chambers 

Parawing vehicles may have unusual values of many of the mass and 

aerodynamic factors affecting dynamic l a t e ra l  s t ab i l i t y  and control. 

These unusual characteristics are due i n  large part t o  the f ac t  that 

the center of gravity of' parawing vehicles is located far below the 

pawing ,  whereas conventional a i r c ra f t  usually have the ver t ical  

center-of-gravity location near the plane of the w i n g s .  

thesis is an analytical inves t iga t ih  of the dynamic l a t e r a l  s tab i l i ty  

and control of a typical parawing vehicle. 

three-degree-of-freedom, rigid body equations of motion. Stabi l i ty  

derivatives used i n  the calculations were obtained from s t a t i c  and 

aynamic force t e s t s  of a parawing model with r ig id  leading-edge and 

keel members. 

of vertical  center-of-gravity position, since this was fuund t o  be the 

The present 

The analysis was made using 

The analysis is  treated mainly i n  terms of the effects 

most significant factor affecting the l a t e ra l  s t ab i l i t y  and, control of 

the hyyothetical vehicle. A V TH Cr2 
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A wide range of applications of the parawing concept is currently 

This type of wing can be packaged and deployed i n  a being considered. 

manner similscr t o  recovery parachutes, and i n  addition provides attract-  

ive glide and landing flme capabilities. 

concept are cargo dropping, spacecraft recovery, manned u t i l i t y  vehicles 

and rocket booster recovery. 

have been obtained i n  support of these applications, however, the factors 

affecting the s tab i l i ty  and control of such vehicles have not been 

clearly defined. Most investigations of the dynamic s t ab i l i t y  and 

control of parawing vehicles have been of a qualitative nature using 

a y n a m i c w  scaled freeoflight models. 

I n  view of the lack of detailed analysis concerning the s tab i l i ty  and 

control of parawing configurations, the present investigation was made 

t o  improve the basic understanding of the major factors influencing the 

s t ab i l i t y  of such vehicles. 

of parawing vehicles might be expected t o  d i f fe r  from those of 

conventional a i rc raf t  because certain physical characteristics of the 

Same paposed uses of the 

A considerable amuunt of aerodynamic data 

(See refs. 1 t o  4, f o r  example.) 

The s tab i l i ty  and control characteristics 

configurations d i f fe r  markedly from the cbaracteristics of conventional 

aircraft .  Axnong these pf73rsical characteristics are: (1) a center-of- 

gravity location far below the wing ,  (2) a mass distribution i n  which 

the mass is  distributed mainly along a ver t ical  axis, and ( 3 )  a wing 

having a shape which tends t o  produce large values of l a t e r a l  force due 

t o  sideslip (Cy,). The second factor is  a result of the first, and the 
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thi rd factor is important because of the first. 

of-gravity position was expected t o  have a predominant influence on the 

dynamic l a t e r a l  s t ab i l i t y  and control of a parawing vehicle, the analysis 

is treated mainly i n  terms of the effect  of ver t ical  center-of-gravity 

location on lateral s k b i l i t y .  

Since the 1m center- 

The effects of individual s t ab i l i t y  

derivatives were also investigated t o  determine which ones were primarily 

responsible for the effects of center-of-gravity location on dynamic 

l a t e r a l  s tabi l i ty .  

Tbe investigation consisted of a theoretical  determination of the 

dynamic l a t e r a l  characteristics of an unparered parawing-pwload 

combination gliding a% maximum lif t-drag r a t i o  for  several ver t ical  

center-of -gravity locations. Stabi l i ty  derivatives used i n  the calm= 

lations were based on the results of s t a t i c  and aynamic force tests of 

a parawing model havisg an aspect r a t i o  of 2.83 a.nd deployed leading 

edge sweep m e  of 500. The effects of center-of-gravity location on 

the s tab i l i ty  derivatives are considered important i n  themselves t o  the 

understanding of the aynamic s t ab i l i t y  and control of paraxing vehicles. 

Consequently, the effects of center-of-gravity location on the deriv- 

atives are analyzed as a distinct part of the investigation. 
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The calculated stability and control resul ts  are presented with 

respect t o  the stability axis system sham i n  figure 1. 

force test data of the parawing model are  presented for the body axis 

system sham i n  figure 2. 

the flat-pattern characteristics of the p a r a w i n g  (45' leading-edge 

sweep condition) given i n  table 1. 

AU. basic 

The aerohynamic coefficients ere baaed on 

b 
- 
C 

%I 

f 

FD 

coefficients of lateral s t ab i l i t y  quartic 

w i n g  span, f t  

mean aerodynamic chord, f t  

b a g  coefficient, F ~ L S  

lift coefficient, FL/q,S 

rol l ing moment coefficient, %/QSb 

incremental roll ing moment coefficient 

pitching moment coefficient, My/qmSz 

yawing moment coefficient, %/LSb 

incremental yawing-moment coefficient 

side-force coefficient, Fy/q,S 

incremental side-f orce coefficient 

nuriiber of cycles required for the amplitude of a l a t e r a l  

oscil lation t o  decrease by a factor  of 2 

d i f f e ren t id  operator (d/dsb) 

frequency of oscillation, cps 

drag, 
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I'L 

FY 

Q 

k 

kZO 

KXO 

ZO 
K 

KX 

KZ 

. 

side-f orce, lb 

acceleration due t o  gravity, f t /sec 2 

reduced frequency parameter, wb - 
2v 

radius of gyration i n  r o l l  about principal longitudinal 

axis, ft 

radius of gyration i n  yaw about principal ver t ica l  axis, ft 

nondimensional radius of gyration i n  r o l l  about principal 

longitudinal axis (k /b) 
XO 

nondimensional radius of gyration i n  yaw about principal 

ver t ica l  axis (kzo/b) 

nondimensional radius of gyration i n  r o l l  about longitudinal 

s t ab i l i t y  axis ( \/Kx: cos 2 r) + KZ 2 sin'?) 
0 

nondimensional radius of gyration in  y a w  about ver t ica l  

s t ab i l i t y  axis 

nondimensional product-of-inertia parameter Kxz 

L/D l if t-drag r a t i o  

L/& maxirmlm lift-drag r a t i o  

m mass, slugs 

Mx rol l ing moment, f t - lb  

pitching moment, f t - l b  Mi 
% yawing moment, f t - lb  



I -  

I .  

P 

B, 

r 

R 

S 

Sb 

t 

t l / 2  

v 

xi 

a 

B 

B 

s, 
Y 

FCTiQd 9-f Q S C i & t i G S ,  S 2 C  

roll ing velocity, rad/sec 

free-stream aynamlc pressure, lb/sq ft 

yawing velocity, raii/sec 

Routh's discriminant 

wing area, sq f t  

nondimensional time parameter based on span (Vt/b) 

time, sec 

t i m e  required for the amplitude of the l a t e r a l  oscil lation 

t o  decrease %y a factor  of 2, sec 

free-stream velocity, f t /sec 

body reference axes 

nondimensional distances along the body reference axes from 

basic mument reference center (see f ig .  3 )  

nondimensional distances measured frm 0.3 keel length 

station t o  center-of-gravity location measured i n  axis 

system parallel  t o  s t ab i l i t y  axes (see fig.  1) 

any of the mass or aerodynamic terms i n  the lateral equations 

of motion 

angle of attack of keel, deg 

angle of sideslip, deg o r  rad 

ra te  of change of sideslip, rad/sec 

angle of sideslip of parawing, deg 

f l i gh t  path angle (see f ig .  l), deg 



E angle between reference axis and principal axis, positive 

when reference axis is  above principal axis at  nose, deg 

(see f ig .  1) 

angle of attack of principal longitudinal axis, positive when 

principal axis is above f l i g h t  path a t  the nose (fig.  l), 

deg 

root of s tab i l i ty  quartic Ah4 + Bh3 + CA 2 + DA + E = 0 

lateral relative-density factor  (m/pSb) 

mass density of a i r ,  slugs/cu f t  

r a t i o  of air density a t  a l t i tude t o  that a t  sea leve l  

angle of bank, deg or rad 

angle of bank of parawing, positive when right wing t i p  is 

down, deg 

angle of yaw, deg or rad 

r a t i o  of the amplitudes of r o l l  and y a w  present i n  a mode 

of motion 

r a t i o  of the amplitudes of r o l l  and s idesl ip  present i n  a 

mode of motion 

rolling parameter, deg/ft/sec 

= -, per deg or per rad czs a$ 
k n  C = -, per deg or  per rad 

"P as 
= -, a% per deg or per rad 

% as 
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c2P = - ag 

I n  the present investigation the term "in-phase derivative" refers 

t o  any one of the oscillatory derivatives tha t  is based on the 

cmponents of forces and moments i n  phase with the angular displacement 

during the oscUatory  tests. 

t o  any one of the s t a b i l i t y  derivatives that is based on the components 

of forces and moments 90' out of phase w i t h  angular displacement. 

oscillatory derivatives of the present investigation were measured i n  

the following combinations: 

The term "out-of-phase derivative" refers 

The 

Rolling Oscillation Tests 

In-phase 

cZg s i n  a - 12 ~ 2 %  

s in  a - k2 C.;, 

Cya s in  a - k2 Cy;, 
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Out-of -phase 

C2 + C2* sin a 

C9 + Cni sin a 
P B 

cyP + % sin a 



A. Method Of Analysis 

The ana;lysis was made for a hypothetical paraglider system 

consisting of a parawing-payload combination having the mass charac- 

teristics of' a recer?t.ly p o p x e d  reravcxy system. 

payload were assumed t o  be r igidly joined so  that there was no relative 

motion between them except f o r  intentions control movements. Longitu- 

dinal t r i m  was assumed t o  be obtained solely by varying the fore and 

aft  position of the center of gravity of the system. 

center-of-gravity location was varied by locating the payload relative 

t o  the parawing i n  such a manner as t o  yield several specified center- 

of-gravity locations perpendicular t o  the parawing keel &r ( i n  terms 

of z/b) w h i l e  maintaining the proper position paral le l  t o  the keel ( i n  

terms of x/b) required for longitudinal trim. 

f o r  each center-of-gravity location were then estimated frm measured 

derivatives for the wing alone, and calculations were made t o  determine 

the dynamic l a t e ra l  s tab i l i ty  and control of the vehicle f o r  each 

center-of-gravity location, 

-piravii-ig aud 

The vert ical  

The s t ab i l i t y  derivatives 

B. Description of Vehicle 

The recovery system was assumed t o  employ an aspect-ratio 2.83 

parawing having a conical canopy and flat-pattern sweep angle of 45'. 

I n  the deployed, or  flight condition the parawing fabric was supported 

i n  a 50° swesp condition by three r ig id  tubular menibers which formed 

the keel and leading edges of the parawing. Parawing and payload weights 
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were assumed t o  consist only of drag and were considered only i n  the 

determination of longitudinal trim. The system center-of-gravity 

location was vazied i n  the previously discussed manner such that three 

different configurations of the original concept w e r e  studied. These 

configurations axe herein referred t o  as A, By and C y  (z/b = 0.25, 0.50, 

and 0.75, respectively). 

The configurations were assumed t o  use the wing-bank system fo r  

l a t e ra l  control - that is, the wing was banked abuut an axis paral le l  

t o  the keel meniber t o  produce the forces and moments rewired  f o r  l a t e r a l  

control. This is, i n  effect, similar t o  the center-of-gravity sh i f t  

type of control actual ly used on p a w i n g s  with suspended payloads. As 

stated i n  reference 3,  when such a system is used for control the 

incremental l a t e r a l  force and mament coefficients produced by wing bark 

may approximately be expressed as 

(1) 

my = 45 + CL sin 6 
- 

ACn = CnP & + CL s i n  & 
- 
Z ~1 = cZB & + 6 cL s in  & 

where sin pW = s i n  a s i n  &. 
The first terms of the right hand side of the equations ar ise  from 

the f ac t  that a value of sideslip is  obtained at  the parawing when the 

wing is  banked f o r  keel angles of attack other than zero. The second 

terms are the contributions of the l a t e r a l  component of the lift vector 

which has been t i l t e d  by banking the wing. 
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The l a t e ra l  s tab i l i ty  derivatives of the configurations were 

assumed t o  be due t o  the pasawing alone. There was virlxall;. no infor- 

mation available on the ayaamic s t ab i l i t y  derivatives, however; so, i n  

order t o  provide reasonable inputs fo r  the aynamic s tab i l i ty  analysis, 

an experimental investigation was con&ucted t o  determine both the s t a t i c  

and dynamic s tab i l i ty  derivatives of a 0.12-scale model of the parawing 

assumed for  the theoretical ardysis. 

A sketch of the model parawing is presented i n  figure 3 .  The model 

was constructed of nonporous plast ic  menibrane attached to three equal 

length r igid members such that i n  the deplayed or flight condition the 

r igid menibers supported the fabric i n  a 20' sweep condition. Additional 

information pertaining t o  the model can be f uund in reference 5. 

The s t a t i c  and dynamic force t e s t s  were conducted in  a low-speed 

tunnel w i t h  a =-foot octagonal test section a t  the Langley Research 

Center. 

square foot which corresponds t o  a Reynolds number of 0 . 9  x 10 6 based 

on the keel length. 

sideslip range of *2O. 

roll with angular amplitudes of k 5 O  and f o r  a value of the reduced 

frequency parameter k of 0.25. A detailed description of the dynamic 

The t e s t s  were made a t  a dynamic pressure of 1.63 pounds per 

The s ta t ic  l a t e r a l  t e s t s  were made for an angle-of- 

Forced oscil lation t e s t s  were made i n  yaw and 

force t e s t  equipment and the method of obtaining the aynamic parameters 

i s  presented i n  reference 6. 

basic moment center sham i n  figure 3; and the s t a t i c  and aynamic 

l a t e r a l  s tab i l i ty  derivatives of the complete configurations were 

The moments were all measured about the 
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obtained by ~ ~ E E I I ~ P ~ ~ ~ P G  these irisaswe6 wing-alone model rjata t o  the 

required center-of-gravity locations by means of the equations of 

reference 7 which are included i n  the appendix of t h i s  paper fo r  

Calculations were made t o  determine the dynamic l a t e r a l  s t ab i l i t y  

and control of the three parawing configurations for  the condition of 

L/D- gliding f l igh t  a t  an al t i tude of 10,000 feet .  

The l a t e ra l  s t ab i l i t y  calculations consisted & the determination 

The damping of the damping and period of the l a t e r a l  modes of motion. 

of both the oscillatory and aperiodic modes is expressed i n  terms of the 

d a q i n g f a c t a r  - ' the reciprocal of t3e time t o  damp t o  one-half' 
tl/2' 

amplitude. Positive values of th i s  parameter indicate s tab i l i ty  

(positive damping) and negative values indicate instabi l i ty  (negative 

damping). The calculations were made using the equations of motion 

given i n  appendix B. Stabil i ty buundaries i n  terms of the dihedral 

effect derivative C2 

were also determined. 

and the directional s t ab i l i t y  derivative Cn 
P B 

The spiral, or s t a t i c  s t ab i l i t y  boundary i s  

described by 

E = O  (2) 

while the necessary and suf'ficient conditions fo r  neutral oscillatory 

s t ab i l i t y  are that the coefficients of the s t ab i l i t y  quartic sat isfy 

Routh's discriminant set  equal t o  zero 



and that B and D have the sane sign. The significance of the 

l a t e r a l  s tab i l i ty  boundaries is indicated by a discussion of the modes 

of motion i n  the Cz C plane. 
p' nB 

Calculations were a l s o  made t o  determine which aerodynamic and mass 

parameters affected the la te ra l  s t ab i l i t y  of the configurations t o  the 

greatest extent as the center-of-gravity location w a s  varied. 

calculations were made using the method of reference 8 which is based 

on a Taylor's series expansion of the roots of the s tab i l i ty  quartic 

near the original solution. 

small incremental changes in  derivatives and mass parameters near the 

original solution, the method does afford an insight as t o  the important 

terms i n  the equations of motion as the center of gravity and hence the 

s tab i l i ty  derivatives and mass distribution are changed. 

are presented as slopes indicating the ra te  of change of the damping 

and frequency of the various modes of the l a t e r a l  motion with changes 

i n  any of the parameters i n  the equations of motion. 

These 

Although s t r i c t l y  applicable only for  

The results 

In  conjunction with these calculations, the graphical root locus 

technique w a s  used t o  help visualize the character of the solution of 

the l a t e ra l  s tab i l i ty  quartic as the mass and aerodynamic parameters 

were vasied. This method i l lustrates  the path, or locus of the 

solutions of the quartic on the complex plane. 

are the features of the ccanrplex plane as applied t o  dynamic systems. 

Lines of constant time t o  halve amplitude (or double amplitude) are 

parallel  t o  the imaginary axis. 

represent constant values of damping ratios and cycles t o  halve (or 

Presented i n  figure 4 

Radial l ines emanating from the origin 
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duuble amplitude. 

of canstant undamped natural frequency. For s tabi l i ty ,  a l l  roots of 

the quartic must be located in the l e f t  half of the complex plane; that 

is, there must be no positive r e a l  parts t o  the solutions. 

Circles w i t h  centers a t  the origin represent l ines  

The l a t e r a l  control calculations consisted of calculation of the 

ia-teral motions foliowing a step input of 5" wing-bank angle. 

equations of motion were solved using numerical integration techniques 

i n  conjunction w i t h  a d ig i ta l  computer. 

The 

A l l  of the foregoing types of calculations were made for  configu- 

rations A, B, and C. 

of the magnitude of the factors causing the effects of vertical  center- 

of-gravity position shown by comparison of the results f o r  configurations 

A, B, and C, additional calculations were made for  configuration A i n  

which the values of mass and aerodynamic parameters were changed one- 

at-a-time t o  the values for  configuration B t o  determine the effects of 

these individual parameter changes on damping and period. 

I n  an attempt t o  provide a better understanding 



21 

I -  
A. Presentation of Results 

The results of the parawing model force t e s t s  are presented in  

Calculated l a t e ra l  s tab i l i ty  derivatives and mass figures 5 t o  8. 

2~szterist-zs &- the .CL--- uu cc a - 1 1  I U-U-DLQI~ --%--I cmf5guratiorj.s are presented i n  

figures 9 t o  12 and are tabulated i n  table 2. 

dynamic l a t e r a l  s tab i l i ty  calculations are presented i n  figures 13 

through 18 with the sensitivity of the aynamic l a t e ra l  s t ab i l i t y  of the 

configurations t o  changes i n  the s t ab i l i t y  derivatives and mass param- 

eters being l i s t ed  i n  tables 3 and 4. 

changes i n  the character of the solutions of the l a t e r a l  s tab i l i ty  

quartic 86 the s t ab i l i t y  and mass parameters are changed are presented 

i n  figures 19 t o  28. 

input are presented i n  figures 29 and 30. The t w o  primary results of 

the investigation - the changes i n  the s tab i l i ty  derivatives and mass 

parameters with center-of-gravity location and the effects on dynamic 

l a t e ra l  s tab i l i ty  and control of these parameter changes - are  discussed 

separately. 

The results of the 

Root locus plots showing the 

Time histories of the motions following wing-bank 

It shauld be noted that any theoretical analysis of the dynamics 

of a parawing configuration can be limited by the concept i t s e l f .  

f lex ib i l i ty  of the parawing, the means of connection between parawing 

and payload, and the m e r  of degrees of freedom of the system all 

complicate and i n  some cases may render useless any analytic attempt 

t o  predict the dynamics of the system. Consequently, the calculated 

The 
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resuits contairid herein do iict t iy~Q- directly- t o  p&-zwii-,g c~ijjigwaticjns 

o r  flight conditions other than those investigated. 

however, that the major results and trends sham by these calculations 

are indicative of the dy-namic characteristics t o  be expected of vehicles 

which have the following characteristics: very l o w  center-of-gravity 

location, mass distributed mainly along the ver t ical  axis, and a w i n g  

which has a large value of the lateral-force derivative 

characteristics are typ ica l  of a wide variety of paragliders, o r  gliding 

parachutes. 

It i s  believed, 

%a' These 

B. Stabi l i ty  Derivatives and Mass Parameters 

Mass distribution.- The calculated mass and geometric charac- 

t e r i s t i c s  of the three configurations are given i n  table 2. It should 

be noted that for a l l  three configurations the nondimensional radius of 

gyration i n  roll (Kx) was larger than the nondimensional radius of 

gyration in  yaw (Kz). This situation is quite different from that of a 

conventional airplane where the radius of gyration i n  r o l l  is less  than 

that i n  yaw (Kx < Kz) and leads t o  near-vertical inclinations of the 

principal axis of l ea s t  inertia. 

lead t o  substantial. differences i n  the character of the l a t e ra l  motions 

between parawing vehicles and conventional a i rcraf t .  

large values of inclination of the axis of l ea s t  iner t ia  w i l l  lead t o  

increased yawing components in the l a t e r a l  modes of motion since a 

vehicle w i l l  inherently tend t o  move about an axis of l eas t  inertia. 

This difference w o u l d  be expected t o  

For example, the 

It whould be noted that i n  the present investigation, the principal 

longitudinal axis (the axis t o  which 9 is referenced) was considered, 
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i n  tine conventional manner, t o  be the axis located i n  a generally 

forward direction. 

vehicles this was the axis of greatest inertia.  

The only unusual si tuation was that fo r  the parawing 

Longitudinal characteristics.- The parawing system was assumed 

(on the basis of the model force t e s t  data of figure 5 with an added 

drag increment t o  account for the payload) t o  have a maximum L/D value 

of 4.27 a t  25' keel angle of attack for all center-of-gravity locations. 

The longitudinal s t ab i l i t y  of the configurations w a s  not investigated 

i n  th i s  study, but it might be noted that a paraglider configuration 

becomes more stable longitudinally fo r  increasing values of x/b and 

z/b . 
Sta t ic  lateral s tab i l i ty  derivatives. - The s t a t i c  lateral s t ab i l i t y  

characteristics of the parawing model are presented i n  figure 6 i n  the 

form of the s t a t i c  s t ab i l i t y  derivatives CYa, CnB, and C2 plotted 

against angle of attack. The values of the derivatives were obtained 

from the differences between the values of the coefficients at  sideslip 

angles of +5O and -5'. The variation of Cn (referenced t o  body axes) B 
shows a negative, or destabilizing trend a t  abuut 3 3 O  angle of attack. 

It should not be inferred f'rm t h i s  result that a vehicle with th i s  

p a r a w i n g  would experience a directional divergence a t  these higher 

angles of attack. It is a w e l l  established f ac t  that when an a i rc raf t  

has large negative values of C2 i n  conjunction with the negative 

values of C a directional divergence does not necessarily OCCUT. 

This point i s  discussed i n  detail  i n  reference 9. 

B 

B 
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m e  v&1..les Qf the s+-atic ht#P,ral gt&*’<*-- -LII by derivatives (referenced 

t o  s tab i l i ty  axes) for  the three configurations based on the m o d e l  data 

and the transfer equations of the appendix are given i n  figure 9. 

Lowering the center-of-gravity location frm configuration A t o  that of 

configuration C increased the values of both C and -CzB. The 

increase i n  the directional s tab i l i ty  derivative 

fac t  that as ver t ical  center-of-gravity location (F/b) is increased, 

the horizontal location (Z/b) must also be changed t o  maintain longi- 

tudinal trim. 

ns 
Cnp is caused by the 

Dyaamlc l a t e ra l  stability derivatives.- The variation of the in- 

phase oscillatory derivatives with angle of attack for  the parawing 

model is presented i n  figure 7. 

are also presented and are sham t o  be generally in  good agreement 

with the oscillatory data. 

Static data referenced t o  body axes 

The variation of the out-of-phase derivatives w i t h  angle of attack 

is presented i n  figure 8. 

and the damping-in-yaw parameter (Cnr - Cni cos a) were essentially 

constant over the angle-of-attack range up t o  the stall, which probably 

indicates that the 

the angle-of-attack range below about 35O. 

derivatives is in  contrast with results of forced oscil lation t e s t s  of 

swept r ig id  w i n g s  (see ref.  10, fo r  example) i n  which separated f l a w  

effects have led t o  large values of the 

of attack. The contrasting characteristics of the parawing may have 

been caused by the f lexibi l i ty  of the parawing i t s e l f  or by leading- 

The damping-in-roll parameter (C2 + C2 sin a) P B  

portion of the derivatives were negligible i n  

This apparent lack of 

derivatives a t  high angles 
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edge characteristics. 

change of sideslip ( b )  derivatives were negligible and the measured 

conbinations were treated as pure rol l ing and ;yawing derivatives i n  

the dynamic s t ab i l i t y  calculations. 

Czp + Cz- s in '=  was assumed t o  be Cz 

t-he later& s t ab i l i t y  derivatives of the full-scale configuration. 

I n  any event, it was assumed that the rate-of- 

For example, the cmbination 

fo r  purposes af determining B P 

The calculated effect  of center-of-gravity location on the dynamic 

l a t e r a l  s t ab i l i t y  derivatives of the three full-scale parawing configu- 

rations is sham in  figures 10 and U. 

location f rom that of configuration A t o  configuration C led t o  a 

positive increase i n  the yawing mament dtue t o  rol l ing velocity (C 

and negative increases i n  the damping i n  roll derivative (C2 ) and the 

damping in  yaw derivative (Cnr). The changes i n  the aynamic s t ab i l i t y  

derivatives with ver t ica l  center-of-gravity location are quite large 

because of the cmibination of lmge  distance between the center of 

gravity and the wing and large lateral-force derivative 

enter into the transfer of these derivatives as products. 

increasing the vertical  distance between the center of gravity and 

the parawing keel essentia.lly makes the parawing act  as a high ver t ical  

tail (with short tajl length) w o u l d  on a conventional airplane - that 

is, the side-force derivative C, 

predminant contributor t o  the derivative transfer equations. 

Lowering the center-of-gravity 

) np 
P 

which 

I n  effect, 

of the parawing tends t o  be the 
B 

The incremental values of lateral force and mment coefficients 

produced by 5' wing-bank angle as calculated from equations (1) are 

presented in  figure 12. The incremental rol l ing moment coefficient 
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C. Dynamic Lateral S tab i l i ty  m d  Control 

The results of the calculations t o  determine dynamic l a t e r a l  

s tab i l i ty  are discussed i n  terms of the s t ab i l i t y  of the different 

modes of l a t e r a l  motion. For conventional aircraf't, these modes are 

usually a highly damped aperiodic rol l ing motion known as the r o l l  

subsidence mode, a l igh t ly  damped aperiodic motion involving y a w i n g  

and rol l ing known as the spiral  mode, and a l a t e r a l  oscil lation known 

as the Dutch r o l l .  

configurations may be different i n  nature i n  comparison with conven- 

t ional  nomenclature w i l l  be used t o  i d e n t w  the various modes. 

Althaugh the lateral modes of the parawing 

Location of roots on the complex plane.- The nondimensional roots 

of the l a t e r a l  s tab i l i ty  quartic for  each configuration are plotted 

on the complex plane i n  figure 13. 

are negative and both are therefore stable. O f  particular interest  

is the relatively l i gh t  damping of the r o l l  mode for  these configura- 

tions. The complex pairs representing the l a t e r a l  oscil lation are 

near the neutral s t ab i l i t y  line, indicating low values of damping. 

The damping rat ios  for conf'igurations A, By and C are 0.0128, 0.0968, 

and 0.166, respectively. 

The two aperiodic (real)  roots 

Stabi l i ty  buundaries.- Lateral dynamic s tab i l i ty  baundaries f o r  

and C, i n  

All configurations are located i n  a region of the plane 
c2 P P 

the configurations are presented as functions of 

figure 14. 



complex plane representation. 

derivative C will lead t o  sp i ra l  instabi l i ty  f o r  both configura- 

tions A and B, however, configuration C i s  spirally stable far a l l  

Increasing the d i r e c t i o a  s tab i l i ty  

n$ 

positive values of Cn @. 
instabi l i ty  i n  a;U configurations. 

sketches of figure 21 s h m  that i n  the case of configuration A, the 

Dutch roll roots cross over in to  the right half of the cmplex plane 

and became unstable far increasing dihedral. effect. The oscillatory 

instabi l i ty  which occurs i n  configurations €3 and C is  the resul t  of 

Increasing -Czp leads t o  oscillatory 

An inspection of the root locus 

the r o l l  and spiral. roots combining t o  form a long period oscillation. 

R o l l  subsidence mode.- The calculated damping factor of the r o l l  

The subsidence mode of the conf'igurations is presented i n  figure 15. 

b t a  indicate that the system became less  damped as the center-of- 

gravity location of the system was moved downward from that of 

configuration A t o  that of configuration C. 

the classicaJ, single degree of f reedm approximation t o  the r o l l  

The dashed l i ne  represents 

1 
subsidence mode damping czpv ) which generally gives a (G = 1.57 Kgb 

reasonably accurate approxht ion  for conventional a i rcraf t .  

of the two results indicates lazge differences between the complete 

Comparison 

three degree of f reedm results and the simple single degree of 

f reedm results. 

of motion is  dependent on factors other than those included i n  the 

This result indicates that the damping of this mode 

c simple approximation. 
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subsidence mode with changes in  the various parameters i n  the equations * 
"" together ax, of motion are  presented in  table 3 .  Positive values of 

with negative increases i n  xi) lead t o  positive (stabil izing) increases 

i n  the Ciaaping of t h i s  particular mode of motion. The resul ts  show that 

the yawing moment derivatives and ine r t i a  parameters can appreciably 

affect  the damping of t h i s  mode. The resul ts  of the additional calcula- 

t ions i n  which the parameters i n  the ergations of motion of configuration 

A were changed one at  a time t o  those of configuration B i n  an e f for t  t o  

determine the relat ive magnitude of the changes i n  the r o l l  m o d e  damping 

due t o  changes i n  mass and aerodynamic parameters are presented i n  

table  4 together with resul ts  predicted by the slope method. The resul ts  

show t h a t  the decrease i n  damping of the r o l l  mode as the center-of- 

gravity location changed fromthat of configuration A t o  Configuration B 

was caused primarily by the  destabilizing contributions of the derivative 

The increased importance of the yawing 2 and the mass parameter Kx . c"P 
derivatives i n  the determination of the damping of the r o l l  mode can be 

explained by the data of figure 16 which presents the r a t i o  of roll. t o  

yaw amplitude i n  the r o l l  mode. Values of t h i s  parameter usually are 

i n  the range of 30 t o  100 for conventional a i r c ra f t  but fo r  these 

parawing configurations with their  associated s t ab i l i t y  parameters, all 

values were below 5 and indicate the mode w a s  not a pure rol l ing motion 
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center-of-gravity location (configuration C) ,  the  motion consisted of 

almost an equal rol l ing and y a w i n g  - which is quite different  from the 

case f o r  conventional a i rc raf t  where the motion i s  almost pure rolling. 

Spiral mode.- The calculated results presented i n  figure A indicate 

that the sp i ra l  mode  became s l ight ly  more damped as the center of 

gravity w a s  lowered with respect t o  the w i n g .  

indicates that the stabil izing effect  w a s  primarily due t o  the 

s tabi l iz ing influence of changes i n  those derivatives (C2  and Cnr) 

t h a t  usually affect  the sp i ra l  s t ab i l i t y  of an a i rc raf t .  

An inspection of table 4 

B 
The sp i ra l  

root can usually be approximated by h = E and those terms which 

most affect  t h i s  r a t i o  are seen t o  be of great importance i n  the 

damping of the spiral mode for the p a r a w i x g  configuration - as they 

have t radi t ional ly  been f o r  conventional airplanes. 

Oscillatory mode.- Presented i n  figures 17 and 18 are summaries of 

the Dutch r o l l  oscil lation characteristics of the three configurations. 

The inverse cyclic damping - and roll t o  s idesl ip  parameter 

f o r  each configuration are  presented together with the recommended 

boundary of reference ll. i n  figure 17. The presentation of the Dutch 

roll characteristics i n  t h i s  manner is not necessarily meant t o  imply 

that parawing configurations should conform t o  the handling quality 

parameters of conventional aircraft, but it i s  one of the present 

standards available fo r  evaluating the e f fec t  of the Dutch r o l l  

characterist ics on flying qualities and is  consequently used f o r  

purposes of camparison. 

I4 c1/2 

T h e  results are also compared i n  figure 18 t o  



the older handling quality requirements (eqressed- i n  t . e m  of bx> ing  

and period of the oscillation) of reference 12 inasmuch as the present 

day a i r c ra f t  requirements tend t o  present pessimistic views of the 

oscil latory characterist ics of vehicles having extremely l ight  wing 

loadings (the equivalent side velocity 

s-er than that of conventional a i rc raf t ) .  

increasing the ver t ica l  distance between parawing and payload (varying 

center-of-gravity location from configuration A t o  C )  l ed  t o  a longer 

period, bet ter  damped lateral oscil lation, and smaller values of roU-  

to-sideslip ratio.  

handling quality requirements with both configurations A and B lacking 

satisfactory Dutch r o l l  damping. 

show that only configuration A did not sa t i s fy  the older handling 

W i t y  requirements. 

Ve of such vehicles is much 

The resul ts  indicate that 

Only configuration C sa t i s f ied  the present day 

The resul ts  presented i n  figure 18 

Tables 3 and 4 indicate t h a t  the increase i n  damping as the center 

of gravity is  lowered i s  primarily caused by the stabil izing contribu- 

being larger than the t ion  result ing from the positive increase i n  

destabilizing contribution of Kxz. The effects of C on the damping 

of the l a t e ra l  oscil lation and aperiodic modes have been investigated 

i n  the past (refs. 13 and 14) where it was shown that  positive increases 

i n  the derivative usually increases the d imping  of the Dutch r o l l  mode 

while decreasing the damping of the r o l l  subsidence mode. The deriva- 

t i ve  C w i l l  almost always be increased positively by increasing 

ver t ica l  distance between the parawing and center of gravity. 

i n  the same gemetric variables will usually lead t o  negative values of 

Kxz as explained previously. 

c"P 

ap 

nP 
Increases 



It should be noted that i n  table 3 the contributions of C-., 

Czp, and Cl t o  the Dutch r o l l  w i n g  reverse signs between configu- 
P 

rations A and B. "hat is ,  increases i n  the derivatives in  the usual 

s tabi l iz ing sense (negative for 

t o  less stable Dutch r o l l  oscillations for  configurations B and C. 

and cz ) lead 

An 
cnP B 

, positive f o r  
clP 

examination of the root locus sketches of figures 20 and 2 1  reveals 

that  the location of the circular symbols (zeros) change between 

configuration A and B. 

s t ab i l i t y  quartic; fo r  example, i n  figure 21  the Dutch r o l l  mode rapidly 

becomes unstable as dihedral effect  is increased fo r  configuration A 

while the mode becomes more stable for  configurations B and C. 

results are  primarily due t o t h e  effect  of 

damping of the system. 

fo r  large positive values of C 

t o t a l  damping of the system can be expressed as B/A. 

derivative of the r a t i o  with respect t o  any parameter 

therefore follow the relat ion 

This changes the nature of the solution of the 

These 

C on the distribution of 
np 

Similar resul ts  are reported i n  reference 13 

A s  discussed i n  reference 14, the "P' 
The pa r t i a l  

x i  must 

S p i r a l  R o l l  Dutch r o l l  
mode mode mode 

az! 
axi P P 

Since - A f o r  Cn 

t ives  do not change the t o t a l  damping but merely redistribute the 

damping among the modes) the stabil izing contribution of the derivatives 

and C2 must be zero (changes i n  these deriva- 

t o  the r o l l  subsidence damping (as i n  configuration A) is accompanied 

by a decrease i n  the Dutch r o l l  damping. 



Theoretical investigations in  the past (see ref.  15, for  example) 

have shown that the reversal of the sign of 

mode  

ratio- A and B could be predicted by the algebraic sign of the 

expression 

c - 2c& 
nP 

Positive values of t h i s  quantity indicated that increases in  the 

effective dihedral parameter -C2@ w o u l d  lead t o  larger values of the 

Dutch r o l l  damping factor. The reversal of the sense of the contribu- 

t ion  of Cz t o  the darnping of the l a t e ra l  osci l la t ion as the center- 

of-gravity w a s  lawered with respect t o  the parawing was therefore due 
P 

t o  the positive increase i n  C brought about by center-of-gravity 

posit  ion. 
"p 

The data presented in  tables 3 and 4 indicate that the decrease 

in  frequency of the Dutch r o l l  osci l la t ion with increasing values of 

x/b was due primarily t o  the mass parameters Km and Kx2 

s t ab i l i t y  derivatives Cng) Cnp, and C2 

- 
and the 

P '  
!The effect  of increasing the raduis of gyration i n  y a w  as presented 

i n  figure 28 should be noted inasmuch as  the root locus shows the 

Dutch roll mode becomes unstable for  increases i n  yawing inertia.  This 

f ac t  may be important for  parawing configurations having large values 

of yawing moment Of iner t ia ,  such as parawing-booster combinations. 

Lateral response t o  wing-bank control.- The responses of the 

configuration t o  5' wing-bank control are presented i n  figure 29. The 
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resu l t s  of the t-bee-degree-of-freedom calculations show tht the 

i n i t i a l  r o l l  response w a s  about equal f o r  all configurations; but, as 

gravity locations (configurations B and C )  showed greater response t o  

wing-bank control. The enlarged plot of the time history of the i n i t i a l  

yawing  motions shown i n  f i g u r e  30 indicates t h a t  increasing the ver t ica l  

center-of-gravity location decreased the i n i t i a l  adverse yawing motion, 

which i s  opposite t o  w h a t  would be expected from a s t a t i c  aerodynamic 

standpoint. This resu l t  is caused by the favorable contribution of the 

product-of-inertia factor  t o  the i n i t i a l  yawing acceleration as expressed 

by the relation: 

2 
Db* = (4) 

A s  pointed out i n  reference 16 and as can be seen from equation ( k ) ,  

negative values of Kxz give a favorable yawing moment contribution 

and can thereby significantly affect  the yawing characterist ics i n  an 

aileron r o l l  as the center-of-gravity location is  lowered from that of 

configuration A t o  t h a t  of configuration C. 

parameter, as discussed earlier,  w i l l  almost certainly be negative for  

large values of z/b. 

The product of iner t ia  
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I X  . CONCLUSIONS 

The results of a theoret ical  investigation of the dynamic l a t e r a l  

s t a b i i i t y  and control of a pirakirg corifZgl i i -~t lon hzving r i g i d  l.z&irG 

edge and keel  members may be summarized as follows : 

1. Increasing t h e  ver t ica l  distance between the  center of gravity 

and t h e  parawing keel while maintaining t h e  horizontal location required 

f o r  longitudinal trim led  t o  a decrease i n  the  damping of t h e  r o l l -  

subsidence mode and an increase i n  t h e  damping of t h e  s p i r a l  mode. 

Lowering the  center of gravity a l so  caused an increase i n  the  damping 

and period of t h e  lateral osc i l la t ion  and a reduction i n  t h e  r a t i o  of 

r o l l  t o  s idesl ip .  

2. The two parameters t h a t  most affected t h e  damping of t h e  l a t e r a l  

o sc i l l a t ion  with ve r t i ca l  changes i n  center of gravity location w e r e  t he  

yawing-moment -due-to-rolling derivative 

product of i n e r t i a  fac tor  Km. 

and t h e  nondimensional cnP 

3 .  There was l i t t l e  effect  of ve r t i ca l  center-of-gravity location 

on the  i n i t i a l  r o l l  response t o  wing bank control but as t h e  motion 

progressedthe configurations having the  lower centers of gravity 

displayed. t h e  greater  r o l l  response. 

of gravi ty  locat ion on t h e  mass dis t r ibu t ion  of t h e  system produced 

s igni f icant  changes i n  the  i n i t i a l  adverse yawing motion following 

the  application of King bank control. 

by lowering the  center of gravity r e l a t i v e  t o  the  parawing tended t o  

reduce the  i n i t i a l  adverse yaw. 

The e f fec ts  of ve r t i ca l  center 

Negative values of Km caused 
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A. S tab i l i ty  Derivative Transfer Equations 

The distances x and z correspond t o  those of figure 3 .  Zero 

subscripts indicate data measured abmt the basic reference center 

PO 
CYP = CY 

cyP PO r0 
= C y  cos a + Cy s in  a + 2Cy 

Z - cos a + - s in  
b CYr = cyr cos a - Cypo s in  a - 2Cyp0 

0 

X = C2 cos a + Cn sin a + Cy cos a - - s i n  
PO Po b 

2 + c ) s in  a cos a + cnro s i n  a 
P O  

= c cos2a + (c2 
clP 2P0 r0 

+ 2 c y  [ ; c o s a - -  X b s i n  j 2  
PO 

2 s i n  a ) "Po 
cos 2 a + (cnr0 - elpo s i n  a cos a - c 

X 
e -  

b 

z + -  
b 

cos%, - (%p + 2c1 )s in  a cos a - 2cn s in24 
0 PO BO 

xz b (cos2a - 



c 

I -  

cos a - C 2  s in  a - / x  = c  cos a + s i n  a) 
c”$ PO b 

C cos 2 a + ( c “ ro  - c )sin a cos a - s i n  2 a ‘zr0 

PO %o 

”p = 2P0 

+ 2cn )sin a cos a - 2~ s i n  a ‘3 2 - kypo cos a + 

+ 2c 2 S i n  Ci, COS - 
$0 

xz (cos2a - 
0 

s i n  a cos a + C2 s i n  2 a 
+ c”po) PO 

cnr = cnro cos2a - (c 

1 + 2c )sincj[. E cos a + - z s i n  a - (5 r0 + 2cngo)cos a - (”.. 0 %O b 

>’ cos a - - Z sin a 
b 



3. E q z t i G i - i i  c;f :4l=tizn 

The nondimensional l a t e ra l  equations of motion referred t o  a 

stability-axes system (fig. l), are: 

Roll 

Sideslip 

is substituted f o r  8, voe As, for  9, and poe hsb 

fo r  B i n  the equations written i n  determinant fom, h must be a 

root of the s t a b i l i t y  equation 
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. 
I 

The damping and period of a mode of motion i n  seconds are  given, 

tl/2 = - 0.69L and p = - 2s b 
d i J  respectively, by the equations 

where c and d are the r ea l  and imaginary parts of the root of the 

s t ab i l i t y  equa,tion. 

c v  
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Aspect r a t i o  

F l a t . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Deployed . . . . . . . . . . . . . . . . . . . . . . . . . . .  
L i e s  

Flat ,  s q f t  . . . . . . . . . . . . . . . . . . . . . . . . .  
Deployed, sq f t  . . . . . . . . . . . . . . . . . . . . . . .  

Mean aerodynamic chord 

F l a t  and deployed, in. . . . . . . . . . . . . . . . . . . .  
Span 

Fla t ,  in. . . . . . . . . . . . . . . . . . . . . . . . . . .  
Deployed, in. . . . . . . . . . . . . . . . . . . . . . . . .  

Root chord, in.  . . . . . . . . . . . . . . . . . . . . . . . .  
Sweep angle 

F la t ,  deg . . . . . . . . . . . . . . . . . . . . . . . . . .  
Deployed, deg . . . . . . . . . . . . . . . . . . . . . . . .  

2.83 

2.57 

12.27 

n. 16 

33 9 33 

70 71 

64.28 

50.00 

43.00 

50.00 



OF T€E CONFIGURATIONS 

A 

-0.2556 

.072165 

- .14287 
.0701 

.DO314 

- .OB946 
.0305k 

. 009 

- 01757 
.0iU15 

.0163 

.000681 

3.183 

757 

- .2338 
-18'2 

- .0636 
25 

B 

-0.2556 

.08275 

-. 208438 
-. 06107 
.02422 

- .17846 
.om52 

.0486 

- .02452 
.04118 

.01697 

- .003266 
3.183 

9 757 

- .2338 
7O36 

- .I348 
50 

C 

-0.2556 

09325 

- .27405 
- 1923 
.Ob529 

- .33479 
07725 

' 09898 

- 0332 
079694 

.018045 

- -00972 
3 183 

757 

- .2338 
go= ' 

- .2060 

- 75 
(All vdlues are preserhed uith respect t o  s t a b i l i t y  axes) 
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8- 1 - f1/2 
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Dutch roll RCIU 
subsidence 
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-1.23 0.95 -0.83 
-1.82 1.56 13.88 
-0.016 -0.29 0.0034 
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Figure 1.- The s t ab i l i t y  system of axes. 
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Figure 2.- The body system of axes. 
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i Figure 3.- G e m e t r y  of the deployed parawing model. Dimensions a r e  
given i n  inches. 
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Figure 5.- Summary of the s ta t ic  longitudinal characteristics of the 
model p a r a w i n g .  
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Figure 9.- Variation of the s t a t i c  l a t e r a l  s t ab i l i t y  derivatives with 
center-of-gravity position. D a t a  referenced t o  s t ab i l i t y  axes, 
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Figure 10.- Variation of the rolling lateral stability derivatives with 
center-of-gravity position. 
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Figure ll.- Variation of the  yawing lateral s t ab i l i t y  derivatives with 
center-of-gravity position. 
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Figure 15.- Variation of the damping factor of the l a t e r a l  aperiodic 
modes w i t h  center-of-gravity position. 
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Figure 17.- Suunnary of the lateral osciUaSmry characteristics of the 
three configurations canpaxed with the present military 
requirements for satisfactory aircraft handling qualities. 
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Figure 18.- Oscillatory characteristics campased with the older 
military handling quality requirements. 
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Figure 29.- Effect of center-of-gravity location on l a t e r a l  response 
t o  wing-bank control. & = 5 O .  
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